Fractal Patterns of Neural Activity Exist within the Suprachiasmatic Nucleus and Require Extrinsic Network Interactions
نویسندگان
چکیده
The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ~24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales--from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation.
منابع مشابه
Interactive Effects of Dorsomedial Hypothalamic Nucleus and Time-Restricted Feeding on Fractal Motor Activity Regulation
One evolutionary adaptation in motor activity control of animals is the anticipation of food that drives foraging under natural conditions and is mimicked in laboratory with daily scheduled food availability. Food anticipation is characterized by increased activity a few hours before the feeding period. Here we report that 2-h food availability during the normal inactive phase of rats not only ...
متن کاملNoninvasive fractal biomarker of clock neurotransmitter disturbance in humans with dementia
Human motor activity has a robust, intrinsic fractal structure with similar patterns from minutes to hours. The fractal activity patterns appear to be physiologically important because the patterns persist under different environmental conditions but are significantly altered/reduced with aging and Alzheimer's disease (AD). Here, we report that dementia patients, known to have disrupted circadi...
متن کاملIdentification of geochemical anomalies associated with Cu mineralization by applying spectrum-area multi-fractal and wavelet neural network methods in Shahr-e-Babak mining area, Kerman, Iran
The Shahr-e-Babak district, as the studied area, is known for its large Cu resources. It is located in the southern side of the Central Iranian volcano–sedimentary complex in SE Iran. Shahr-e-Babak is currently facing a shortage of resources, and therefore, mineral exploration in the deeper and peripheral spaces has become a high priority in this area. This work aims to identify the geochemical...
متن کاملCharacterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus.
Because we can observe oscillation within individual cells and in the tissue as a whole, the suprachiasmatic nucleus (SCN) presents a unique system in the mammalian brain for the analysis of individual cells and the networks of which they are a part. While dispersed cells of the SCN sustain circadian oscillations in isolation, they are unstable oscillators that require network interactions for ...
متن کاملFractal Regulation in Temporal Activity Fluctuations: A Biomarker for Circadian Control and Beyond.
Motor activity in humans and other animals possesses fractal temporal fluctuations that co-exists with circadian or daily activity rhythms. The perturbations in fractal activity patterns are often accompanied by altered circadian/daily rhythms. The goal of this study is to test whether fractal regulation in motor activity provides physiological information independent from 24-h/circadian rhythm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012